Gas Transport and Electrochemistry in Solid Oxide Fuel Cell Electrodes

Wilson K. S. Chiu Department of Mechanical Engineering University of Connecticut

Overview of Research Activities

Heat & Mass Transfer with Chemical Rxns:

CVD Nanomaterials

Photonics

P. Russell, Science 299:358, 2003.

Chiu Research Laboratory Department of Mechanical Engineering

Outline

- Introduction Energy Conversion
- Fuel Cell Background & Motivation
- Imaging & Analysis at the Pore Level
 - Pore Imaging
 - Gas Transport
 - Electrochemistry
- Electrode Microstructure and Grading
- Conclusions & Future Research Plans

Global Energy Usage

U.S. Energy Usage

Energy Information Association Annual Energy Outlook, DOE/EIA Report # 0383, 2007. C. Song, *Catal. Today* **115**:2-32. 2006.

Energy Conversion Efficiency

US Power Plants, 2003, in quadrillion BTU C. Song, *Catal. Today* **115**:2-32. 2006.

Energy Conversion Technologies

For Fossil Fuels:

- SOA: Heat Engines
 - Steam Cycles
 - Gas Turbines

Fuel Cells?

High Electrical Efficiency

Fuel Flexibility

Scalable

Outline

Introduction – Energy Conversion

Fuel Cell Background & Motivation

- Imaging & Analysis at the Pore Level
 - Pore Imaging
 - Gas Transport
 - Electrochemistry
- Electrode Microstructure and Grading
- Conclusions & Future Research Plans

Types of Fuel Cells

Fuel Cells	Electrolyte	Operating Temperature °C	Fuel Supply	Applications
Alkaline (AFC)	circulating liquid or matrix	50-250	Hydrogen or NH ₃ -Cracker	small units, up to automobiles
Proton Exchange	immobilized,	60-100	Hydrogen or	small units, up
Membrane(PEM)	acidic		Converter	to automobiles
Phosphoric Acid (PAFC)	concentrated acid gel	175-200	Hydrogen or Converter	Power Plants 50 to 200 kW
Molten Carbonate	Li/Na-carbonate	600-1000	Selected fuel	Power Plants
(MCFC)	melt		or Converter	up to 1 MW
Solid Oxide	ceramic Zr/Y-	650-1000	All Fuels,	Small to large
(SOFC)	oxides		direct feed	Power Plants

Solid Oxide Fuel Cell

How, specifically, can we design fuel cell microstructure to optimize performance and durability?

Modeling Tool needed to Determine Optimal Microstructure.

Outline

- Introduction Energy Conversion
- Fuel Cell Background & Motivation

Imaging & Analysis at the Pore Level

- Pore Imaging
- Gas Transport
- Electrochemistry
- Electrode Microstructure and Grading
- Conclusions & Future Research Plans

SOFC Pore Structure Imaging X-Ray Microtomography (XMT)

- Non-destructive tomography capable of reconstructing 3-D pore structure.
- X-rays penetrate sample, which is mounted on a rotation stage, and pass through a scintillation screen. The 2-D slice is captured by a camera.
- The sample is rotated through 180 degrees where each slice is captured at specified angle intervals and reconstructed into a 3-D volume of the pore structure.

SOFC Pore Structure Imaging – cont'd

XMT Experiment details

- Xradia (Concord, CA)
- B keV copper source
- 181 projections at 300 sec per projection
- \square 22.6 μm field of view
- 50 nm resolution
- 3-D tomographic reconstruction

Imaging Processing and Modeling

A.S. Joshi, W.K.S. Chiu, et al., 9th AIAA-2006-3820, 2006.

Modeling Challenges

- Gas diffusion occurs at high temperature and through micron size pores. Continuum theory is no longer valid.
- Gas particles can get adsorbed on the solid material.
- Complex structure.

Chemical reactions among gas components need to be included for the case of internal reforming and at the TPB.

Chiu Research Laboratory Department of Mechanical Engineering

SOLID

A Comparison of Modeling Approaches

Lattice Boltzmann Method (LBM)

- Historically derived from the lattice gas cellular automata
- LBM is a numerical approximation to the Boltzmann equation

- Multiple species
- Complex geometry
- Parallel algorithm
- Wall interactions
- Non-continuum regime

M.E. McCracken M. E. and J. Abraham, Phys. Rev. E, 71:046704. 2005.

Basic LBM Algorithm: Stream and Collide

Multi-Component Gas Transport in a SOFC Anode

Chiu Research Laboratory Department of Mechanical Engineering A.S. Joshi, W.K.S. Chiu, et al., *J. Power Sources*, accepted, 2006. A.S. Joshi, W.K.S. Chiu, et al., 42nd Power Sources Conference, pp. 131-134, 2006.

LBM Validation

Non-dimensional current density (i*)

LBM Validation – cont'd.

Knudsen number (Kn)

A.S. Joshi, W.K.S. Chiu, et al., ASME IMECE2006-13620, 2006.

Electrochemical Reaction Kinetics in a SOFC Anode

Global Reaction:
$$H_2^{g} + O_{electrolyte}^{2-} \rightarrow H_2 O^{g} + 2e_{Ni}^{-}$$

The Gauckler Reaction Mechanism:

$$H_{2}(g) + 2S \xleftarrow{k_{1,k-1}} 2H \bullet S$$

$$H_{2}O(g) + S \xleftarrow{k_{2,k-2}} H_{2}O \bullet S$$

$$O \bullet S + H \bullet S \xleftarrow{k_{3,k-3}} OH \bullet S + S$$

$$H_{2}O \bullet S + O \bullet S \xleftarrow{k_{4,k-4}} 2OH \bullet S$$

$$H_{2}O \bullet S + S \xleftarrow{k_{5,k-5}} OH \bullet S + H \bullet S$$

$$O_{O}^{x} + S \xleftarrow{k_{6,k-6}} O \bullet S + V_{O}^{x} + 2e_{Ni}^{-}$$

A. Bieberle and L.J. Gauckler, Solid State Ionics. 146: 23-41, 2002.

Chiu Research Laboratory **Department of Mechanical Engineering**

0.S

Triple Phase Boundary (TPB)

 $k_{+/-\#}$: Reaction rate

 $H_2(g)$

H·S

(1)

(2)**OH**·S

(2)

<u>e</u>-

O²⁻

(5)

 $X \bullet S$: Surface species

Oxygen ion

Surface vacancy

Oxygen vacancies

Desorption (2) Surface Diffusion

 $(4)O^2$ Diffusion

(1) Dissociation/Adsorption/

(3) Triple Phase Boundary

(5) Ion Transfer into Anode

S:

 $V_{o}^{\cdot\cdot\cdot}$

 O_o^x :

H₂O(g

0.8

(4)

O²⁻

Electrolyte

H₂O·S

Electrochemical Model Rate Equations

- Traditional analysis requires selection of single rate limiting step and equilibration
 - Langmuir-Hinshelwood type rate equation
- Approach breaks down when reaction mechanisms contain steps that occur at similar rates
- For proposed mechanism requires solution to set of (4) coupled nonlinear, stiff differential-equations

$$\begin{aligned} \frac{\partial \theta_{H}}{\partial t} &= \left(2k_{1}\theta_{V}^{2} - 2k_{-1}\theta_{H}^{2} - k_{3}\theta_{H}\theta_{O} + k_{-3}\theta_{OH}\theta_{V} + k_{5}\theta_{H_{2}O}\theta_{V} - k_{-5}\theta_{OH}\theta_{H}\right) \\ \frac{\partial \theta_{H_{2}O}}{\partial t} &= \left(k_{2}\theta_{V} - k_{-2}\theta_{H_{2}O} + k_{-4}\theta_{OH}^{2} - k_{5}\theta_{H_{2}O}\theta_{V} - k_{-5}\theta_{OH}\theta_{H}\right) \\ \frac{\partial \theta_{OH}}{\partial t} &= \left(k_{3}\theta_{H}\theta_{O} - k_{-3}\theta_{OH}\theta_{V} + 2k_{4}\theta_{H_{2}O}\theta_{O} - 2k_{-4}\theta_{OH}^{2} + k_{5}\theta_{H_{2}O}\theta_{V} - k_{-5}\theta_{OH}\theta_{H}\right) \\ \frac{\partial \theta_{O}}{\partial t} &= \left(-k_{3}\theta_{H}\theta_{O} + k_{-3}\theta_{OH}\theta_{V} + -k_{4}\theta_{H_{2}O}\theta_{O} + k_{-4}\theta_{OH}^{2} + k_{6}\theta_{V} + k_{-6}\theta_{O}\right) \\ 1 &= \theta_{V} + \theta_{H} + \theta_{OH} + \theta_{H_{2}O} + \theta_{O} \end{aligned}$$

Validation of Reaction Kinetics Function

Electrochemistry & Gas Transport in a SOFC Anode

Outline

- Introduction Energy Conversion
- Fuel Cell Background & Motivation
- Imaging & Analysis at the Pore Level
 - Pore Imaging
 - Gas Transport
 - Electrochemistry
- Electrode Microstructure and Grading
- Conclusions & Future Research Plans

Electrode Microstructure

Structure can be described by three parameters:

- Ψ Structural Parameter (ϵ/τ)
 - Porosity: $0 \le \varepsilon \le 1$
 - Tortuosity: $\tau \ge 1$
 - ~10X as important upon performance as other parameters in conditions studied.
- <r> Average pore radius
- <r²> Pore radius distribution

Pore-Level Analysis \Rightarrow Properties, η_{act} , η_{ohmic} , η_{conc}

Effect of Grading Electrode Microstructure

- Performance evaluated with alternative anode designs
 - Two fuel streams
 - Diluted hydrogen Conditions near cell outlet
 10% H₂ 3% H2O balance inert gas
 - Partially reformed methane with internal reforming- Approx. cell inlet
 - 10% H₂ 49% CH₄ 30% H₂O 6% CO 5% CO₂

□ Four microstructure cases

- $\{1\}$ Ψ is a constant high value of 0.25
- $\{2\}$ Ψ is a constant low value of 0.05
- {3} Ψ is high at the TPB and low at the gas supply channel 0.25 -> 0.05
- {4} Ψ is low at the TPB and high at the gas supply channel 0.05 -> 0.25

Model Validation by Experiments

E. S. Greene, W. K. S. Chiu, A. A. Burke and M. G. Medeiros, 42nd Power Sources Conference, pp. 451-454, 2006.

E. S. Greene, W. K. S. Chiu and M. G. Medeiros, J. Power Sources 161:225-231, 2006.

SOFC Performance Correlations

 $\frac{\text{Curve Fits}}{\text{Da} \sim d^{1.79}}$ $R^{2} = 0.999$ $Da \sim \Psi^{0.357}$ $R^{2} = 0.998$ • Displays prevalently kinetically limited characteristics (Da<1)

• Exponent of power law fits display larger sensitivity of Da to d than Ψ

E.S. Greene, M.G. Medeiros and W.K.S. Chiu, J. Fuel Cell Sci. Tech. 2:136-140, 2005.

Conclusions

- SOFC is promising energy conversion device.
- Performance strongly dependent on electrode microstructure.
- Presented modeling/experimental approach to analyze and design SOFC electrodes.
- Optimized fuel cell electrodes can provide a durable high efficiency energy conversion technology for our society.

Acknowledgements

- Sponsors
 - Office of Naval Research
 - Army Research Office
 - University of Connecticut Institute of Materials Science
- Collaborators
 - Naval Undersea Warfare Center
 - Adaptive Materials
 - NexTech Materials
 - Xradia
 - Advanced Photon Source, Argonne National Lab

Acknowledgements – Fuel Cell Group

- Aldo Peracchio, Visiting Scholar
- Abhijit Joshi, Post-Doctoral Researcher

Graduate Students

- Srinath S. Chakravarthy
- Eric S. Greene
- Kyle N. Grew
- John R. Izzo
- Andrew C. Lysaght
- Undergraduate & High School Students

